Publication | International Conference on Machine Learning 2022
SkexGen
Autoregressive Generation of CAD Construction Sequences with Disentangled Codebooks
This Autodesk Research paper describes a new approach to generation of solid CAD models that enhances user control and enables efficient exploration of the design space.
Download publicationAbstract
SkexGen: Autoregressive Generation of CAD Construction Sequences with Disentangled Codebooks
Xiang Xu, Karl D.D. Willis, Joseph G. Lambourne, Chin-Yi Cheng, Pradeep Kumar Jayaraman, Yasutaka Furukawa
International Conference on Machine Learning 2022
We present SkexGen, a novel autoregressive generative model for computer-aided design (CAD) construction sequences containing sketch-and-extrude modeling operations. Our model utilizes distinct Transformer architectures to encode topological, geometric, and extrusion variations of construction sequences into disentangled codebooks. Autoregressive Transformer decoders generate CAD construction sequences sharing certain properties specified by the codebook vectors. Extensive experiments demonstrate that our disentangled codebook representation generates diverse and high-quality CAD models, enhances user control, and enables efficient exploration of the design space.
Related Resources
2005
Alias Cloth Technology Demonstration for the Cell ProcessorThis technology demonstration shows a prototype of a next generation…
1988
Rendu realiste de surfaces par la methode du ray tracingLe probleme est de representer une scene sur un plan de projection (…
2016
Motion Amplifiers: Sketching Dynamic Illustrations Using the Principles of 2D AnimationWe present a sketching tool for crafting animated illustrations that…
2020
Contrastive Multi-View Representation Learning on GraphsWe introduce a self-supervised approach for learning node and graph…
Get in touch
Something pique your interest? Get in touch if you’d like to learn more about Autodesk Research, our projects, people, and potential collaboration opportunities.
Contact us