Publication
Planning to Fold Multiple Objects from a Single Self-Folding Sheet
AbstractThis paper considers planning and control algorithms that enable a programmable sheet to realize different shapes by autonomous folding. Prior work on self-reconfiguring machines has considered modular systems in which independent units coordinate with their neighbors to realize a desired shape. A key limitation in these prior systems is the typically many operations to make and break connections with neighbors, which lead to brittle performance. We seek to mitigate these difficulties through the unique concept of self-folding origami with a universal fixed set of hinges. This approach exploits a single sheet composed of interconnected triangular sections. The sheet is able to fold into a set of predetermined shapes using embedded actuation. We describe the planning algorithms underlying these selffolding sheets, forming a new family of reconfigurable robots that fold themselves into origami by actuating edges to fold by desired angles at desired times. Given a flat sheet, the set of hinges, and a desired folded state for the sheet, the algorithms (1) plan a continuous folding motion into the desired state, (2) discretize this motion into a practicable sequence of phases, (3) overlay these patterns and factor the steps into a minimum set of groups, and (4) automatically plan the location of actuators and threads on the sheet for implementing the shape-formation control.
Download publicationRelated Resources
See what’s new.
2024
Optimized GPU Implementation of Grid Refinement in Lattice Boltzmann MethodOptimized GPU-accelerated algorithm for implementing grid refinement…
2023
Recently Published by Autodesk ResearchersA selection of recently published papers by Autodesk Researchers…
1999
An exploration into supporting artwork orientation in the user interfaceRotating a piece of paper while drawing is an integral and almost…
2008
An FPGA-based model suitable for evolution and development of spiking neural networksWe propose a digital neuron model suitable for evolving and growing…
Get in touch
Something pique your interest? Get in touch if you’d like to learn more about Autodesk Research, our projects, people, and potential collaboration opportunities.
Contact us