Publication | ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2023
Conceptual Design Generation Using Large Language Models
Abstract
Conceptual Design Generation Using Large Language Models
Kevin Ma, Daniele Grandi, Christopher McComb, Kosa Goucher-Lambert
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2023
Concept generation is a creative step in the conceptual design phase, where designers often turn to brainstorming, mindmapping, or crowdsourcing design ideas to complement their own knowledge of the domain. Recent advances in natural language processing (NLP) and machine learning (ML) have led to the rise of Large Language Models (LLMs) capable of generating seemingly creative outputs from textual prompts. The success of these models has led to their integration and application across a variety of domains, including art, entertainment, and other creative work. In this paper, we leverage LLMs to generate solutions for a set of 12 design problems and compare them to a baseline of crowdsourced solutions. We evaluate the differences between generated and crowdsourced design solutions through multiple perspectives, including human expert evaluations and computational metrics. Expert evaluations indicate that the LLM-generated solutions have higher average feasibility and usefulness while the crowdsourced solutions have more novelty. We experiment with prompt engineering and find that leveraging few-shot learning can lead to the generation of solutions that are more similar to the crowdsourced solutions. These findings provide insight into the quality of design solutions generated with LLMs and begins to evaluate prompt engineering techniques that could be leveraged by practitioners to generate higher-quality design solutions synergistically with LLMs.
Download publicationRelated Resources
2022
Path Counting for Grid-Based NavigationCounting the number of shortest paths on a grid is a simple procedure…
2022
CAPRI-Net: Learning Compact CAD Shapes with Adaptive Primitive AssemblyWe introduce CAPRI-Net, a self-supervised neural net-work for learning…
2022
Systems Design and SimulationPredictive models of complex systems will require a more scalable,…
2023
Autodesk Research and DAISY AI at Greenbuild 2022Learn how Autodesk Research and DAISY AI Inc recently showcased the…
Get in touch
Something pique your interest? Get in touch if you’d like to learn more about Autodesk Research, our projects, people, and potential collaboration opportunities.
Contact us